منابع مشابه
Injecting External Solutions Into CMA-ES
This report considers how to inject external candidate solutions into the CMA-ES algorithm. The injected solutions might stem from a gradient or a Newton step, a surrogate model optimizer or any other oracle or search mechanism. They can also be the result of a repair mechanism, for example to render infeasible solutions feasible. Only small modifications to the CMA-ES are necessary to turn inj...
متن کاملAlternative Restart Strategies for CMA-ES
This paper focuses on the restart strategy of CMA-ES on multi-modal functions. A first alternative strategy proceeds by decreasing the initial step-size of the mutation while doubling the population size at each restart. A second strategy adaptively allocates the computational budget among the restart settings in the BIPOP scheme. Both restart strategies are validated on the BBOB benchmark; the...
متن کاملGlobally Convergent Evolution Strategies and CMA-ES
In this paper we show how to modify a large class of evolution strategies (ES) to rigorously achieve a form of global convergence, meaning convergence to stationary points independently of the starting point. The type of ES under consideration recombine the parents by means of a weighted sum, around which the offsprings are computed by random generation. One relevant instance of such ES is CMA-...
متن کاملRecombination for Learning Strategy Parameters in the MO-CMA-ES
The multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) is a variable-metric algorithm for real-valued vector optimization. It maintains a parent population of candidate solutions, which are varied by additive, zero-mean Gaussian mutations. Each individual learns its own covariance matrix for the mutation distribution considering only its parent and offspring. However, t...
متن کاملCMA-ES with Optimal Covariance Update and Storage Complexity
The covariance matrix adaptation evolution strategy (CMA-ES) is arguably one of the most powerful real-valued derivative-free optimization algorithms, finding many applications in machine learning. The CMA-ES is a Monte Carlo method, sampling from a sequence of multi-variate Gaussian distributions. Given the function values at the sampled points, updating and storing the covariance matrix domin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2019
ISSN: 1556-5068
DOI: 10.2139/ssrn.3365453